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J.  Phys. A: Math. Gen. 23 (1990) 1613-1626. Printed in the UK 

Solution of the Bethe ansatz equations with complex roots for 
finite size: the spin S 2 1 isotropic and anisotropic chains 

H J de Vega and F Woynarovicht 
Laboratoire de Physique ThCorique et Hautes Energies$, Tour 16, ler  etage, Universiti 
Paris VI, 4 Place Jussieu, 75252 Paris Cedex 05, France 

Received 9 October 1989 

Abstract. The Bethe ansatz equations for spin-b ( S a  1) integrable vertex models (and 
magnetic chains) where the ground state is formed by complex roots are investigated for 
finite-size N. It is shown that the finite-size corrections to the imaginary parts of the roots 
(Bethe strings) for N >> 1 are given by a , , , / [ N u ( ~ ) ]  where 4 is the real part of the roots, 
u(7) is the density of the real parts, and m is the index of a root within a string. The 
constants a, are determined by a set of algebraic equations, and are given explicitly by 

cos[trr(S - m - 1)/(b+ 1 )3 
c o s [ J ~ ( S  - m ) / ( S  + 1 )3 

For the best known, S = 1, case a, = In 2/(2rr). 
These results are found through a generalisation of the Euler-Maclaurin formula 

including non-analytic contributions in N - '  which turn out to be essential in the solution 
of the present problem. 

1. Introduction 

The Bethe ansatz provides through the solution of a system of coupled algebraic 
equations the exact eigenvalues and eigenvectors of an integrable model. (For a recent 
review see de Vega (1989).) 

For antiferromagnetic regimes the explicit solution of the Bethe ansatz equations 
( BAE) is straightforward in the thermodynamic limit only. The analytic resolution of 
the BAE for a finite number of sites is a formidable task as soon as the number of sites 
N is not very small. A systematic procedure to solve the B A E  for large but finite N 
and to analytically compute asymptotic expansions for the physical quantities has been 
proposed by de Vega and Woynarovich (1985). This method has been elaborated and 
generalised for different cases by Woynarovich and Eckle (1987), Batchelor et a1 (1987), 
de Vega and Karowski (1987), Woynarovich (1987) and de Vega (1987,1988). In all 
the cases treated in the above works the ground state is formed by a set of real roots. 

In the s p i n 3  integrable models with S a  1 (Takhtadzhyan 1982, Kulish and 
Reshetikhin 1981, Babujan 1983) the ground-state solution of the BAE is given by a 
set of complex roots. Therefore, these models are outside the scope of the analytic 
methods developed so far. The present paper is a first step to the analytic solution of 
the B A E  for large N when the ground state is formed by complex roots. We formulate 

t On leave of absence from: Central Research Institute for Physics, Budapest, Hungary. 
$ Laboratoire Associe au CNRS, UA 280. 
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our method for those models for which in the thermodynamic limit the roots form 
Bethe strings, i.e. sets of roots with common real parts and imaginary parts differing 
from each other by a constant. For an isotropic model 

j = 1 , 2  , . . . ,  N / 2  m = 0 , 1 ,  . . . ,  2s -1 .  (1.1) 
For finite size both the real and imaginary parts of the roots are modified by finite-N 
effects 

7, + i( S - t - m ) 

7," + i( S - f - m )  +is;. (1.2) 
Neglecting the finite-size effects in the imaginary parts (6 ; )  the finite-size corrections 

for the real parts can be treated by standard methods (see the references above). This 
approximation is, however, not sufficient, as clearly indicated by the fact that calculating 
the central charge in this way yields c = 1 for all spins, which is clearly a wrong result 
(Alcaraz and Martins 1988, Avdeev and Dorfel 1987, de Vega 1987). 

We present here a method for analytically calculating the finite-size effects on 6;.  
We find that unlike the case where strings like (1.2) appear as excitations (Bethe 1931, 
Takahashi 1971) the 6; are not exponentially small in N but much larger, 6: = O( 1/ N ) .  

The basic step in calculating finite-size corrections is to approximate the sums over 
the roots of the B A E  by integrals plus correction terms. These correction terms are 
given by the Euler-Maclaurin formula or related formulae. These formulae assume 
analytic behaviour of the summand as a function of the summation variable. In the 
case of strings of type (1.2), these analyticity requirements do not hold: in the summands 
there are branch points or poles at distances O(6) from the real axis, and so these 
terms need special care. In appendix 1 we give a generalisation of the Euler-Maclaurin 
formula including the effects (non-analytic in 1/ N )  of these singularities (equations 
(A1.lO) with (A1.9) and (A1.15)). 

With the help of this generalised Euler-Maclaurin formula we calculate the first 
correction in 1/ N to the N = Q7 form of the BAE.  The solution of these equations 
yields the correction to the imaginary parts of the Bethe strings 

a'"(7) N:,, a m / [ 2 N g ( ~ ) l  (1.3) 

where 7 stands for the real part of the root and ~ ( 7 )  is the density of real parts. The 
constants a, follow as solutions of a set of algebraic equations 

1. (1.4) 
cos[f. ir(~ - m - l) /(S+ I)] 

cos [ f . i r ( s -m) / ( s+~) ]  
a, =-ln 

A formula like (1 .3)  was proposed by Avdeev and Dorfel (1987) on grounds of 
numerical calculations. The numerical values for a. in the S = 1 and S = 5 cases given 
by them are in agreement with our exact analytic results. 

Throughout the calculation we concentrate on the finite-size corrections to the 
imaginary parts of the B A E  roots, i.e. on S m ( 7 ) .  Therefore we neglect the finite-size 
corrections to all other quantities which do not contribute to order 1/N in S"'(7). 

Our results hold for roots where the real part is not too close to the ends of the 
distribution (that is, 7 d ( l /n )  In N, i.e. U (  7) 2 1/ N ) .  Nevertheless (1.3) yields good 
results even when 7 = (In N ) !  

In section 2 we treat the S = 1 case, both the isotropic (rational) and the anisotropic 
(trigonometric) one. Section 3 is devoted to the general case of arbitrary spin S >  1 
(isotropic). The generalisation of the Euler-Maclaurin formula to include the non- 
analytic corrections in 1/ N is derived in appendix 1. Appendix 2 contains the general 
solution of the algebraic equations yielding a,. 
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2. The S = 1 Bethe ansatz equations 

2.1. The isotropic case 

The BAE for the S = 1 integrable rational model as well as for the S = 1 integrable 
X X X  chain (Takhtadzhyan 1982) can be written as 

where the number of roots r for the ground state is r = N. The roots of (2.1) appear 
in complex conjugate pairs 

A: = 7, f i ( f+ 6, ). (2.2) 

Here we singled out the imaginary part f 5 that corresponds to the string hypothesis 
(Takhtadzhyan 1982, Kulish and Reshetikhin 1981, Babujan 1983) valid for the N = 00 

limit. For finite size we allow for a correction 6,. This correction is expected to be 
small except for roots with 7, near the end of the distribution (IRe 7, 16 In N ) .  We 
also assume 6, > 0. The consistency of these assumptions is verified in the course of 
the derivation and in the final results. 

Inserting (2.2) into (2.1) yields 

"2 vj - vk +i(6, - 6,) - i  vj - vk +i(f3,+ 8 k  + 1) - i  =-JJ 
k = l  vj - vk +i(  6, - 6,) + i  vj - vk + i(Sj + Sk  + 1) + i 

where we used the result 

Taking the logarithm of (2.3) yields 

1 l + i x / a  X 
q a ( x )  = T In -- - 2 tan-' - 

1 1 - i x l a  U 

1 x - i a  
O a ( x )  =: In - 

1 x + i a '  

(2.3) 

(Note that Y a ( z )  and Q a ( z )  differ merely in the cut structure: for @. , ( z )  the cut runs 
between the two branch points z = *ia while for Ta(.z) the cuts run from the branch 
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points z = ztia to Im z = *CO.) For N -+ CO in the usual procedure all the summands in 
(2.5) are replaced by integrals. To approximate, however, the second sum in (2.5) 

N / 2  

X ( vj ) = C @ I ( Tj - ~k + i (  Sj + a k  + i )  (2.7) 
k = l  

by an integral is a delicate matter. For N + CO, 6 + 0 and the terms k = j  diverge due 
to the branch point of at i. The naive N + CO approximation of (2.7) is 

with U( 7) being the density of the 7,. This approximation is sufficient in the N = 00 

limit, but to establish the N dependence of S as N+CO we also have to correctly 
calculate the contributions of the k = j terms diverging at S = 0. 

As one can see from (2 .6 )  and (2.7), the most important (nearest to the real axis) 
singularity of the summand in (2.7) is situated at 

v, - vk +i(S, + 6,)  = 0. (2.9) 

Since 6, and &. are small (of order 1 / N  as we shall see) those terms are indeed 
dangerous when 17, - v k /  << 1 .  In these terms we can approximate 

v, - T &  = ( j  - k ) / [ N d v ,  )I 8, = S k .  (2.10) 

This implies that in the variable k (the summation variable) the singularity (a logarith- 
mic branch point) is at 

k = j + i a  a 3 2Nu( 9, )a,. (2.11) 

In evaluating the contribution of this singularity it will be also important to know 
(appendix 1 )  that the jump when crossing the cut starting from k = j + i a  is 

A = -21ri. (2.12) 

The presence of such a branch point in the summands of (2.7) as a function of k 
yields contributions non-analytic in 1/  N, which are outside the scope of the standard 
Euler-Maclaurin formula. In appendix 1 we derive a generalisation of the Euler- 
Maclaurin formula which correctly takes account of such singularities (equation 
(A1.10)). 

Inserting (Al.lO)y including the non-analytic term (A1.9), into (2.7) yields 
X 

X ( v ) = N  ~ - ~ d T . u ( v ~ ) @ l ( s - e . + i + i ( S ( 1 ) ) + 6 0 ) )  

- i In[ 1 - exp(-2m(  77))] +0( 1/ N). (2.13) 

We have used the result that u+ iu  in (A1.9) equals j+ia  (equation (2.11)) with j 
being an integer. It has also been supposed that there exists a continuous function 
S ( q )  for which S ( 7 ,  ) = 8,. By this, a ( 7 )  is given by 

a(v) = 2 N 4 v ) S ( v ) .  
The 0 ( 1 / N )  term in (2.13) includes all the analytic finite-size corrections. (Note that 
the second term on the RHS is explicitly non-analytic in 1 / N ;  there is a significant 
singularity of the type exp(A/z) with z = l/N.) 
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Inserting (2.13) into (2.5) and approximating the first term in (2.5) by the appropriate 
integral (in this sum the singularities are far enough from the real axis to give negligible 
contributions), we arrive at 

a 

*1/2[ vj +is( vj )I  - [ dv’  a( ~ ’ ) * ~ l l [  vj - v’+iS( vj ) -is( 7’ )I 
-cc 

a 

+@,,,[vj+i+i8(vj)] - dv’ a ( ~ ‘ ) @ ~ ( v ~  - v’+iS(vj ) + i 8 ( v f ) + i )  I, 
+( i /N)  ln[l - e x p ( - 2 . n a ( q j ) ) ] = 2 . n l j / N .  (2.14) 

=2.rrlj/N. 

Then, realising that a( 7) = z‘( 7) yields 

(2.16) 

(2.17) 

(ii) Substituting this back in (2.15), we find 
a 

m ( vj ) + [ dv’  a (v’)[ +i( vj - v’ ) + @{(  vj - -q‘+ i + io)] 
2 -m 

+ln[l-exp(-2.rra(vj))] = O .  (2.18) 
This equation admits a constant solution a(v) = ao. Integrating with respect to q’, 
we find that 

(2.19) - 27rao = In[ 1 - exp( -27ra0)]. 

Hence 

a. = In 2 / ( 2 ~ r )  = 0.110 3 178 . . . . (2.20) 
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That is, 

11-12 1 In 2 
417 “(7)  ~ T N  

S(7)=-----  - cosh(T7).  (2.21) 

Numerical calculations performed by Avdeev and Dorfel (1987) suggested an 
expression for S ( 7 )  similar to (2.21). The numerical value then found for cyo is in 
perfect agreement with our exact result (2.20). 

The formula (2.21) holds for the bulk, i.e. for S(v)<< 1, which means N u ( 7 )  >> 1 
or n~ < In N. (Near the ends of the distribution “7 = In N, and the derivation of 
(2.20) ceases to be valid.) Comparison with numerical results shows, however, that 
(2.21) gives the correct order of magnitude even for the largest roots. Let us apply 
(2.21) to the worse case, that is for the last root 7, = A  (the root associated with 
ImaX = +( N / 2  - 1)). We find from (2.16) and (2.17) that 

A = ( 1/ T) In( 2 N /  T) + O( 1). (2.22) 

Therefore (2.31) yields 

In 2 
lim S ( A ) = 7 = 0 . 0 3 5  115. .  . . 
I+= 2 T  

(2.23) 

This value underestimates the numerical value of S,,, = 0.046 65 found by Avdeev and 
Dorfel (1987) by about 30%. 

2.2. The anisotropic case 

The anisotropic case can be treated in complete analogy with the isotropic one. The 
BAE are 

(sin h( A, + i y ) ) = - sinh(A, + A k  - iy )  
(2.24) 

We note that the properties of these equations are different for y < ~ / 2  and y > n/2.  
Our subsequent treatment holds for y < ~ / 2 .  The number of roots of (2.24) for the 
ground state, just as in the isotropic case, is r = N and the roots form complex conjugate 
pairs 

sinh(A, - iy)  k = i  sinh(A,-Ak - iy) ’  

A,*= 7,*i(y/2+6,). (2.25) 

Here +i y/2 are the imaginary parts for the roots in the N = CO limit (string hypothesis). 
The 8, are of order 1 / N  except for the roots near the ends of the distribution 
(7, ( y / ~ )  In N). Taking the logarithm of (2.24) in analogy with (2.5) we get 

NWrl,+iS,;  y / 2 )  

= 2 n 4 +  w~, - f7k+i (Sj -Sk) ;  y )  
k = l  

- N@(v,+iy+iS, ;  y/2) 

(2.26) 
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with Z; = 4(N/2+ l)(mod l ) ,  and 

1 sin(y+ix) = 2 tan-’( tanh -) x 
I sin(?-ix) tan y 

q ( x ;  y ) = ~ l n  

sinh(x - iy)  
(2.27) 

Also here q ( z ;  y )  and @(z; y )  differ in the choice of cuts only. As in the isotropic 
case, the second sum must be treated with care. As in (2.7), we define 

(2.28) 

The location of the relevant branch points is again given by (2.9) and around this 
point (2.10) holds, i.e. the summands in (2.28) near the branch point, as functions of 
the summation variable k = z, have the form 

(2.29) 

with a given by (2.11). Also for this function A =  -27ri as in (2.12). The other branch 
point where the cut terminates is sufficiently far away, thus (A1.lO) with (A1.9) apply, 
leading to 

X (  7) = -i In[ 1 - exp( -27ra( 77))] 
oc 

dv’  (r(q’)@(77 - v’+i8(v)+i8(v’ )  +iy;  y )+O( l /N) .  (2.30) 
+ I_, 

Through a completely analogous calculation to (2.14)-(2.21), we find 

Finally, for the anisotropic model we have 

6 ( $ ) = ~ y c o s h ( y ) ,  In 2 

(2.31) 

(2.32) 

(2.33) 

This formula is identical to (2.21) up to the rescaling of the variable A; = 77j * i( y/2 + 8, ) 
by a factor y - ’ .  As before, (2.33) holds in the bulk, which for this case means 
Ivl<(y/.rr)ln N. 

3. The spin-S Bethe ansatz equations 

The BAE in the s p i n 3  case read 
(^,-is))” = - .  A,-A,- i  

A, +iS A, - A , + i  

where r = NS for the ground state. We parametrise the roots as 

A, = A,” = 777 +i(s- f - m)+i6,” m = 0 , 1 , 2  ,..., 2 s - 1  
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where q,!” is real, and we have singled out the imaginary part (S - f - m )  proposed by 
the string hypothesis, Therefore we expect 8; to vanish in the bulk when N + W .  

H J de Vega and F Woynarovich 

Since the roots A, appear in complex conjugated pairs 

s3S- l -m - - -87.  (3.3) 

Therefore, we have only S ( S -  i) independent and real unknowns SJ” for a given j 
when S is an integer (half-integer): 

SJ” with m =0, 1 ,  . . . , S - 1 

ST with m = 0 , 1 , .  . . , S- f 
Notice that Ss-I’2 = 0 in the second case. 

for S = integer 

for S = half-odd integer. 
(3.4) 

It is convenient to rewrite the LHS of (3.1) with the help of the identity 

where 

Then the BAE (3.1) can be recast as 

Taking the logarithm yields 

AfT 1,2(pJ”) - c * 1 (CL,!” - p r) - 2 q  
k 

I t 0  

where and QA are defined by (2.6) and 17 = f ( N / 2 + 1 )  (mod 1 ) .  Since the 8,” 
vanish for N + CO, the terms I = f 1 are to be treated with care. For this we single out 
the piece 

xm(pfl) = 1 [ ~ ~ ( p , ”  - pp+I + i )  +QI(p; - pp- l -  i ) ]  
k 

=I [ ~ ~ ( ~ ~ - ~ ~ + ~ + i + i ~ ~ m - i i s ~ + ~ ) + ( ~ ~ ( ~ ~ - ~ ~ - ~ - i + i ~ ~ - i i s ~ - ~ ) I .  
k 

(3.9) 
(The finite-size corrections due to the branch points in the terms with f # *1 are 
exponentially small in N).  We evaluate (3.9) by once again using (A1.lO) with (A1.9) 
and (A1.15). We find 

X ; ,  = -i In[ 1 - e x p ( - 2 m  X 7  ) ) I  + i log[ 1 - e x p ( 2 m  ;(77))] 
X 

d7’  U”+’( 7’)Ql(  77 - 7’+i + i s “ (  7) -ism+’( 7‘)) 
+ I-, 

X 

+ N  5 d ~ ‘ ~ m - 1 ( r ] ‘ ) Q 1 ( 7 7 - ~ ’ - i + i S m ( ~ ) - i S m - 1 ( ~ ’ )  

+0(1/N) (3.10) 

-cc 
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(3.11) 

and we have assumed 8," > 
(3.10) back in (3.8) and expanding to first order in 6 yields, in analogy with (2.15), 

Nq,,',,,(qJ") - 1 dv' a"(a')*,(v," - r l ' ) - 2 r N z m ( ~ , " )  

(this will be confirmed by the final result). Inserting 

a 

-'x 

I = - m  \ 
I f 0  

(3.12) 

Here we denoted I F /  N = z m (  7, ). As we did for (2.15), we first solve (3.12) for N = 00. 
This gives 

(3.13) 

Notice that the fact that the N = CO limit of (3.12) gives m-independent densities a( 7) 
and counting functions z (  7) justifies the Bethe-string hypothesis at N = 00. 

Now inserting (3.13) into (3.12) yields 
a 

n a m ( 7 ) + ' 5  2 --U3 d7 '9 ' ; (7-7 ' )am(t7 ' )  

(3.14) 

(3.15) 

This equation has a set of 7-independent solutions  CY,(^) = CY,,,. Setting 

x, = exp( - r a m )  (3.16) 
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we find for the constants x ,  the set of algebraic equations 

( x , ) 2 =  1 - X o / X 1  (3.17a) 

(xm I 2  = ( 1 - xm / xm+ I I /  ( 1 - xm - 1/xm ) (3.17 b)  

( x z s - , ) ’ =  1/(1 -x2s-2/x2s-I) .  ( 3 . 1 7 ~ )  

m = 1,2 ,3 , .  . . , 2 S - 2  

Due to (3.3), an acceptable solution of this system must satisfy 

x ,  = l / X * S - , - m .  (3.18) 

This condition is compatible with (3.17) since (3.17) are invariant under the transforma- 
tion (3.18). 

Equations (3.17) can be solved in closed form (see appendix 2) to give 

cos[;.rr(S- m ) / ( S +  l ) ]  
cos[;.rr(S- m - 1 ) / ( S +  I)]  

xm = 

thus, according to (3.16) 

cos[+n(S-m - I ) / ( s + I ) ]  
c o s [ i ~ ( S -  m ) / ( S +  I ) ]  

a ,  =-ln 

i.e. 

cos[$.rr(S-m--l) / (s+l)]  
i,( 

2 . r r N g ( ~ )  C O S [ ~ T ( S - ~ ) / ( S + ~ ) ]  am(77)= 

It is not hard to see that (3.21) satisfies (3.3) and that 

a m ( T )  > a m + I ( T )  

(3.19) 

(3.20) 

(3.21) 

(3.22) 
as was assumed above. 

S =  (3.20) yields 
Equations (3.20) and (3.21) for S = 1 ( m  = 0) coincide with (2.20) and (2.21). For 

ao=(l/.rr)ln[cos(3.rr/10)/cos(.rr/10)]=0.153 17448 . . . .  (3.23) 
The numerical value found by Avdeev and Diirfel (1987) agrees within its error with 
(3.23). When S = 2 (3.20) yields 

cyo = (1/ T )  ln[cos( T / ~ ) / C O S ( T / ~ ) ]  = 0.174 849 58 . . . 
a1 = (1/ T )  In[ l/cos( .rr/6)] = 0.045 786 024. . . (3.24) 

The numerical results obtained by Alcaraz and Martins (1988) for chains with N = 16 
are consistent with our exact results, since they are about 10% larger than (3.24). 

Appendix 1. Generalisation of the Euler-Maclaurin formula including non-analytic 
terms in 1/N 

The Euler-Maclaurin formula expresses a finite sum 

5 f ( k )  
k = n ,  

(Al . l )  

as an integral of f ( x )  over x plus a sum of odd derivatives of f ( x )  at the end points. 
It holds when f ( z )  is holomorphic in the strip n, 4 Re z S  n, (Olver 1974). Here we 
generalise this formula for the case when f(z)  has a branch point at 

z = u + i u  n, < u < n, V > O .  (A1.2) 
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The interesting case for the Bethe ansatz equations is when f ( z )  has a logarithmic 
cut with a constant discontinuity. First we treat the simplest case, when the cut runs 
to infinity. We choose the cut so that 

(A1.3) 

where O( t )  stands for the step function. This equation defines A. We shall also assume 
that f( z )  does not grow too fast as IIm z/ +CO, i.e. 

lim exp(-2rlIm zl)f(z) = 0. (A1.4) 

f( u + iy + 0) - f (  u + iy - 0) = iO( y - IJ)A 

I?,,,:l-= 

Since the residue of the function cot( r z )  at any integer k is l / r ,  we have 
n*- I c f ( k ) = z  dz cot(rz)f(z)  (Al .5)  

where C is the contour depicted in figure 1 .  Let us denote the parts of C lying in the 
half planes i I m  z>O by C, respectively. Then we have 

k = n , + l  I, 

Combining (A1.5) and (A1.6) yields 

k = n , + l  c f ( k ) - j n 2 - ' f ( x ) d x  n , + S  

I l - 1  

dY 
[f(p + iy+O) -f( U + iy - 011. - i  1 -exp[-2r i (u+iy) l  

(A1.6) 

(A1.7) 

The contours C: are depicted in figure 2, and the last term takes into account the 
contributions of the cut. This term, using (A1.3), yields 

A 1 - exp[2ri( U + i u ) ]  
G=-log 

257 1 -exp[2ri(u+ik)]  

n,+iK n,+iK 

(A1.8) 

I Figure 1. The integration contour C in (A1.5). 
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n,+iK n p  K 

Figure 2. The integration contour C: (Im z > 0) and 
CL (Im z < O )  in (A1.7). 

which, by letting K +a, gives 

(A1.9) 

This is the contribution which is absent in the standard Euler-Maclaurin formula and 
which is non-analytic in 1/N. The usual terms in the Euler-Maclaurin formula follow 
from the integral over C: and CY with the final result 

A 
2T 

G =-log(1 -exp[2~i (u+iu) ]} .  

k = n ,  “ I  

m - l  B2s + 7 ( f ” ‘ - ’ 1 ( n 2 ) - ~ ” i - ’ ’ ( n l ) ) + G + R , ( n l ,  n z )  
S = l  (2s).  

(A1.lO) 

with G given by (A1.9). (Both the derivation of the usual terms and the rest R , ( n , ,  n 2 )  
can be found in Olver (1974).) 

A modified version of (A1.lO) can be obtained by slightly deforming the integration 
contours as given in figure 3:  

( A l . l l )  

In the case when the cut terminates at a finite point u ’ + i u ’  the non-analytic 
contribution G is 

A 1 -exp[27ri(u+iu)] 
27r 1 -exp[27ri(u’+iu”)]’ 

G’=-ln (A1.12) 

Even in this case, however, if U’>> 1 (as it is in the BAE case) the denominator is -1, 
and the correction G is given by (A1.9). 
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t i i 
n , - i - l K  n , + i - I K  

Figure 3. The integration contour which leads to -Y (Al .11 ) .  

The generalisation of (A1.9)-(A1.11) to the case when the cut is in the lower 

U ” <  0 n ,  < U ” <  n, (A1.13) 

half-plane is straightforward. When a branch point is at 
zl l  = iU” 

and the discontinuity is 

f( U”+ iy + 0) -f( U”+ iy - 0) = iA@( -y  - U ” )  (Al .  14) 

an  analogous derivation leads to 

A 
2lr 

G”= -- log(1 - e x p [ - 2 ~ i ( u ” + i v ” ) ] )  (A l .  15) 

with the usual terms in (A1.lO) and ( A l . l l )  unchanged. Equation (A1.15) can also 
be used in the case when the cut terminates at a finite value, but far enough from the 
real axis. 

Appendix 2. The solution of equations (3.17) 

Starting with (3.17a) and then applying (3.17b) for increasing m, we find the following 
recursion: 

(A2.1) 

This recurrence is closed by (3 .17~) .  Equation (A2.1) for m = 2 s - 2  together with 
( 3 . 1 7 ~ )  gives 

xzs-1= l/xo (A2.2) 
(see (3.18)). Substituting (A2.2) into (A2.1) successively, we express x, as a function 

xm = ( 1/xo) - ( 1 / xm + 1 ) m = 0 ,  1 , .  . . , 2 S - 2 .  

of xo 

(A2.3) 
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It is convenient to introduce F,(x,) such that 
(A2.4) 

(A2.5) 

Introducing 

(A2.4) gives 

xzs-fl= U f l ( Y ) / U , - l ( Y )  

u , ( y ) =  2YUfl-,(Y) - U f l - A Y )  

and (A2.5) together with (A2.6) yields 

with 

(A2.8) 

(A2.9) 

uo= 1 U1 = 2y. (A2.10) 
Equations (A2.9) with (A2.10) are the recursion relations for the Chebyshev poly- 
nomials of second kind 

( A2.11) u , ( y )  = sin[(n + 1) cos-'(y)]/sin[cos-'(y)]. 
Inserting (A2.8) into (A2.1) for m = 0 ( n  = 2 s )  leads to the equation 

U X + I ( Y )  = 0 
which by (A2.11) has the solution 

(A2.12) 

y = cos[;l.rr/( s + l)]  I = O ,  1, * .  * .  (A2.13) 
The solution which generates all x ,  positive is given by 1 = 1. Thus 

x ~ ~ - ~  = sin[tn(n + I ) / (s+ l)] /s in[$n.rr / (~+ I ) ]  (A2.14) 
i.e. 

x ,  =cos[f.rr(S- m ) / ( S +  l)] /cos[fT(S-m - l ) / ( S +  l)] .  (A2.15) 
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